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We dtscuss an improved technique for handling the Coulomb singulartty in the momentum 
space Hartree-Fock equattons. This method improves the quality of numerical orbitals by 
sigmticantly reducing the integration error. We also examme a number of ways of reducing 
truncation error in these calculations. ‘f’ 1988 Academic Press. fnc 

1. INTR~DucI-I~N 

When solving the molecular Hartree-Fock equations, one has a choice of 
describing molecular orbitals either as an expansion in some simple basis set or as 
an organized set of computed values, i.e., numerically. Although both methods must 
ultimately yield the same results, each has certain advantages and disadvantages 
depending on the computational circumstances. Calculations which use basis sets of 
atomic-based functions (i.e., LCAO calculations) provide a quick, easy estimate of 
molecular orbitals and a great deal of work has gone into computing the necessary 
sets of primitive functions that this method requires. This approach, however, often 
needs a large number of basis functions to achieve highly accurate results. Usually 
this number can be substantially reduced by optimizing the primitives on the 
molecule of interest rather than on the isolated atoms. Such calculations are quite 
expensive, however, and so are rarely done [ 11. 

In contrast to the large number of calculations today which use basis sets, 
numerical orbital calculations are still quite rare. This is due in part to their rela- 
tively recent implementation. Numerical orbital calculations were first performed 
on atoms [2] and later on diatomics [3] because the Coulomb singularities in 
these systems could be eliminated analytically. Those calculations which have been 
done produced exceptionally accurate results. Because these methods are explicitly 
designed to compute a specific subclass of molecules, they cannot be used to study 
polyatomic systems. In the first paper of this series [4] we examined a simple 
algorithm for generating numerical orbitals for general polyatomics. To avoid the 
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numerous singularities which exist in position space, we use the momentum space 
representation of the Hartree-Fock equations [S, 61. Here only one singularity 
exists at the origin and we were able to numerically remove this singularity by 
adding and subtracting it away. This algorithm produced results of four to five 
significant figure accuracy on a number of two-electron systems. These calculations 
also showed that numerical integration error and truncation error (caused by 
integrating over a finite region) were the major impediments to increased accuracy. 
In this paper we compare a new procedure for treating the Coulomb singularity 
with our previous method and we examine a number of ways of decreasing the 
truncation error. 

2. THE HARTREE-FOCK EQUATION IN MOMENTUM SPACE 

In position space the (restricted) Hartree-Fock equations for closed shell 
molecules have the form 

+ 2 C W,(r) d,(r) - C W,,(r) d,(r), 
J J 

where E, is the ith orbital energy, R, is the ath nuclear position, 

#Atoms 

W(r)= 1 .&u,(r) 

a=1 

W,J(r) = S, 0 u(r) 

and where 

u,(r) = l/lr - R, I 
u(r) = l/r 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Above we give both the standard integral form and one which uses the convolution 
relationship 

fog(r)=Id’rlf(r’)g(r-r’) (7) 

to describe the electronelectron part of the Coulomb potential. This latter version 
is especially useful when converting to momentum space. Using Fourier transforms 
and the relationship 

where 

J . d3qf(q) dp - 4) = f@ g(p) = (2nP’ [f(r) s(r)Y (PL 

and 

f(r) = Cf(~)l’ (r) 

g(r) = Mp)lT (4 

the Hartree-Fock equations become 

&,~,(P)=~(,(P)-Id’qW(g)(,(P-q) 

where 

+ 2 C J d34w,(q) 4,(P-q)-C 1 d34W,,(q) tiji(P-q) 
/ 1 

=$4(P)- WWP)+c W,O4,(P)-C w,,@&,(P), 
I I 

W(p)= (27cy3Q S(p) u(p) 

W,(P) = (277p3”2 S,(P) V(P) 

and where 

u(p) = [o(r)lT (p) = (2/~c)‘~‘/p’ 
#Atoms 

S(p)= 1 Zaelp Ra 
n=l 

S,(P) = 1 d3d,*(q) d,(P + q) = (2n)3’2 CS,(r)lT (P) = 4,* 6 #j(P). 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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Although we have written Eq. ( 1) and ( 11) as being mathematically equivalent to 
one another, their numerical solutions have quite different requirements and only in 
the limit of an infinite grid would we expect to obtain the same result. For 
polyatomic systems it is easier to numerically solve the Hartree-Fock equations in 
momentum space because only a single, removable singularity exists. In Ref. [4] we 
proposed the following algorithm to solve such systems: 

Step 1. Initialize the orbitals. One possible choice is the 1s orbital in momen- 
tum space 

d,(p) = Norm/(p’ - 26,)‘. (17) 

Step 2. Normalize the orbitals 

1 = Norm’ d3P Id,(P)1 2. (18) 

Srep 3. Gram-Schmidt orthogonalize each orbital 

&T:(P)= i {m,+,(P)-~~““(P)~d’qi.+,(q)mp.‘“(q)}. 
J=I 

(19) 

Hereafter, all orbitals are assumed to be orthogonal. 

Step 4. Compute the convolutions 

S,,(p) = (2nY Cd.%) JJ(r)l’ h), 

where 

J,(r) = C~,(P)I’ (0 

(20) 

(21) 

Step 5. Compute the SCF energy 

E= 1 j d3p4,*(p) P’&(P) - 2 c j. d3pWp) S:(P) 
I I 

+ 2 c j d3PW,AP) S/y(P) -1 J d3PwJ(P) S,:(P). 
1. / 1-J 

Sfep 6. Compute the convolutions 

(22) 

+ C C fiJ,Cr) 4,@)lT (P), (23) 
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where 

p’,,(r) = C W,(P)l’ (r) 

and 

k(r) = C Wp)lT (r). 

Step 7. Diagonalize the Fock matrix 

c {F, - &ye\* d,,} C:,eW = 0, 

where 

F,, = (:(P)$ 4,(p) + 4,*(p) C,(P) 

to get the orbital energies and the eigenvector coefficients. 

Step 8. Compute the improved approximation to the orbitals 

d:‘“(P) = c 4,(p) cy. 

(24) 

(25) 

(26) 

(27) 

(28) 

If only one orbital exists then 

dp’“(P) = c,(P)/(P2/2 -crew), 

Step 9. Normalize the new guess 

(29) 

I = Norm’ s d3p IF’(P)I’~ (30) 

Step 10. Test for convergence 

4 = s d3p W=“(P) -4,(p)12. (31) 

Step 11. Return to Step 3 unless converged (using whatever criterion--energy, 
0, or a). 

Because the time-limiting step in the solution of Eq. (11) is the evaluation of the 
convolutions, we calculate each convolution using a cascade of fast Fourier trans- 
forms (FFTs). This method scales as N Log, N, where N is the total number of grid 
points used, in contrast to all forms of direct evaluation which scale as N2. In 
addition, each step of our algorithm is easily changed to vector form, so the full 
power of modern supercomputers can be applied to it. This is not true of direct 
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evaluation methods since they require grid interpolations to evaluate the 
convolutions. For these reasons we believe that Eq. ( 17)-( 31) represent the best 
algorithm for computing numerical orbitals. 

3. HANDLING THE COULOMB SINGULARITY 

FFTs require a Cartesian grid with equidistant points. On such a grid, Eq. 
(17)-(31) contain two types of singular integrals. These can be generalized as 

f d)@(P) O(P) 

and 

s d3pA(p) u(p) crp r, 

(32) 

where A(p) is the nonsingular part of the integrand and o(p) is defined in Eq. (14) 
as l/p’. Below we examine three ways of accurately integrating these functions. 
Method 1 numerically removes the singularity by adding and subtracting the point 
p = 0. Method 2 also adds and subtracts the point p = 0 but includes second 
derivatives of the integrand to more accurately mode1 the behavior of A(p) at the 
origin. Method 3 numerically eliminates this singularity by replacing u(p) with the 
transform of u(r) over a finite cube. 

Mefhod 1. By adding and subtracting the point p = 0 in Eq. (32), this integral 
can be rewritten as 

j- d3p{A(p) - A(0)llp2 + A(O) j d3plp2. (34) 

If the origin for the nuclear position vectors R, is placed at the center of charge and 
no exchange terms are present, the leading term of {A(p) - A(O)} is proportional to 
p2 [7] and so th e rrs part of Eq. (34) is smooth everywhere. Since our integration f t 
points are equidistantly spaced over a cubical region, one simple method of 
evaluating this integral is by trapezoidal integration 

I d3p{4p) - ~O)}/P~ - h3 1 F/c,mv (35) 
klm 

where 

F k/m = [A(pkh) - A(“)lld,m tfor Pklm + O) 

(36) 
F(O)=0 
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and where h is the spacing between points. Over the cube C-P, P] the second part 
of Eq. (34) has the value A(0) 15.34824844 P. Similarly, Eq. (33) can be rewritten as 

.r d3p{Np) - A(O)) e -‘P ‘/p2 + A(0) S d3peplp ‘/p’. (37) 

The first part of this expression is again smooth everywhere and can be evaluated 
using an FFT 

I d3p{A(p)-A(0)} e -‘P ‘/p’- h3[Fklm]= (r). (38) 

Because the second part of Eq. (37) is a function of r, its evaluation is somewhat 
more complicated. One very stable method of computing this function is to trans- 
form it into the form 

where 

s 
cube d3pe -lp ‘/p’ = Ix ds I, I, I,, 

0 
(39) 

! 
P 

dve - (51.’ + lr, I ) 

s 

P 

I, = 
-P r 

) I;= p dze - (si2 + ,,:i ,. 

In this representation the inner integrations can be solved analytically 

I, = epr:,4-’ (n/s) ’ Re( 1 - e-“w(iz)), 

where 

z = (Ps-) + i(r,/(2s’i*)) 

(40) 

and where u(k) is of a form of the complex error function which can be evaluated 
very accurately [S]. We compute the outer integration over s in Eq. (39) in two 
parts. In the interval [0, S], where S is some maximum value of s (e.g., S= 2OP), a 
small Gaussian quadrature (l&20 points) is used. For values larger than S the 
integral is evaluated analytically by approximating w(iz) with unity. 

When exchange terms are present, the leading term of (A(p)-A(O)) is propor- 
tional to p. On a finite grid this behavior leads to a singularity at the origin and 
therefore this method fails. 

Method 2. Rather than simply setting F(0) = 0 as we do in Eq. (36), the first 
contribution from the series expansion of {A(p - A(O)} 

F(O) = C40) + A,,(O) + A..(O)W (41) 

can be used. This change should more accurately model the behavior of this 
function around p = 0 and improve the numerical integration. Here A,, (i = x, y, z) 
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are the second derivatives of A(p) and are formed numerically using a Spoint 
difference formula. Additional contributions would contain factors of order h5 or 
higher and so are not included. Like Method 1, this method of treating the 
singularity is expected to be applicable only when no exchange terms are present. 

Method 3. In Eq. (32) and (33) the singularity, l/p*, exists because the transfor- 
mation of u(r) in Eq. (14) has been performed exactly over all space. Calculations 
by Coldwell [9] suggest, however, that this transformation should be treated like 
all our other transformations, i.e, over a finite cube. Because u(p) is no longer 
computed over all space, no singularity exists. The result is that Eq. (32) and (33) 
now have the form 

I d3M(P) C(P) (42) 

and 

s d$l(p) 6(p) e-‘P r (43) 

and can now be’numerically integrated directly. The function 17(p) is best evaluated 
using a transform similar to the one in Eq. (39) 

where 

1, =s” dxe-““‘-‘~,Y), IJ =j-;, d~,e-‘“2?“~‘P,!), 1; =j~R~zC-~rl-~~‘P:=~~ 

-R 

In this representation the inner integrations can be solved analytically 

1, = e ~P~~4s*(n/s)‘~2 Re( 1 - edz2~(iz)), 

where now 
z = (Rs) - i(p,@s)). 

(44) 

(45) 

Unlike Methods 1 and 2 this technique is completely general and its accuracy 
does not depend on the absence or presence of exchange terms. Of the three 
methods proposed here, this one will obviously be the method of choice for mul- 
tiple orbital systems if it can accurately remove the singularity in Eq. (32) and (33). 

To test each of these three methods we first calculate the potential energies of the 
Helium atom using the Is-like orbital 

&PMJ = Norm/h&, + 2)* (46) 

and in Table I we compare these results with the exact value. The energies 
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TABLE I 

Components of the Energy of the Helium Atom 

3 3 3 3 
N=32 N-64 PI=128 N=256 

Kinetic energy 

3 a 
N=512 Extrapolated 

P=lO 1.987864 1.908989 1.988998 1.989000 1.989001(O) 
P=20 1.997483 1.998578 1.998578 1.998578(O) 
P=30 1.999559 1.999576 1.999576 1.999576(O) 
P=40 1.998727 1.999821 1.999821 1.999821(0, 

Exact 2.000000 

Electron-nuclear potential energy 

method 1 

P=lO 2.828310 2.818470 2.816513 2.816110 
P-20 2.835600 2.828280 2.826958 
PP30 2.831765 2.828520 
PE40 2.835421 2.829390 

Hethod 2 

P=lo 2.822200 2.817690 2.816417 2.816100 
P=20 2.829490 2.827508 2.826860 
P=30 
P=40 

2.829169 2.828200 
2.829313 2.828620 

Method 3 

P=lO 2.815221 2.815971 2.015906 2.815990 
p=20 2.825953 2.826646 2.826646 
P=30 2.793198 2.827864 2.827075 
p=40 2 .a27490 2.828189 

Exact 

Electron-electron potential energy 

Method 1 

P=fO 0.093140 0.885490 0.884168 0.003920 
p=20 0.891450 0.885086 0.884086 
P=30 0.887132 0.884370 
p=40 0.890590 

Method 2 

P=lO 0.887040 0.884720 0.884072 
p=20 0.885340 0.884313 
p=30 0.884537 
p=40 0.884482 

Method 3 

P=lo 0.883506 0.883856 0.883856 
p=20 0.883533 0.883882 
p=30 0.868551 0.883877 
p=40 0 883534 

Exact 

0.884870 

0.883910 
0.883990 
0.884050 
0.884160 

0.883856 
0.883882 
0.883883 
0.883883 

2.815985( 1 
2.8266251 45 
2.82743811082 
2.827380(2010 

2.815990( 01 
2.826630( 141 
2.827877(3231 
2.828389(2311 

2.8159911 0) 
2.8266461 0) 
2.0278791 4) 
2.8284191230, 

2.828427 

0.803846 1) 
0.883805 521 
0.883449 921) 
0.882963 1907) 

0.883856 01 
0.883816 61 
0.883888( 
0.884053( 

.63) 

.07, 

0.8838561 01 
0.8838821 0) 
0.8838851 21 
0.88399911161 

0.883883 

a 
The parentheses contain an estimate of the lnteqratlon error. 

Ncxe. Equation (46) is used as the orbital. Values are in hartrees and the potential energies have 
their signs reversed. 
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calculated using Methods 1 and 2 show that including second derivatives 
significantly improves the addition and subtraction of the singularity and that 
Romberg integration is needed to achieve even modest accuracy. In contrast, 
however, Method 3 produces results which are much less noisy than either of these 
other two methods and which converge much faster. Values which were only 
estimated to be close to the exact integrated limit are now obtainable directly. 

In Tables II-V we compare our previous SCF values (Method 2) for the Helium 
atom, the B f3 ion, the H, molecule and the H: ion with the results given by 
Method 3. We selected this set of two electron calculations because they represent a 
good series of tests for each method. Even though they contain only one orbital 
they allow us to examine the behavior of the general algorithm as a function of 
orbital energy, grid size, and grid density. Like the 1s calculations in Table I, 
Method 3 gives much better results than Method 2. In fact, we now believe that our 
best value is the (P = 40, N= 2563) point rather than the Romberg result for P = 40 
since Romberg integration is somewhat unreliable when only two points are 
available. With the possible exception of the B f3 ion, this point is probably closer 
to the exact result because the spacing here (h =0.3125) produces a converged 
numerical integration in the (P = 20, N = 1283) calculation. The final SCF values 
for He (-2.86109), B+3 (-21.93381), H, (- 1.13359), and H: (- 1.30035) are not 
that much different from the earlier calculations but the convergence is much 
smoother and thus the integration error is smaller. There is no real change, 
however, in the integration and truncation errors. A complete discussion of these 
various error estimates is given in Ref. [4]. 

In addition to being able to predict the error associated with our energies, it is 
also important to know if they are variational. Tables II-V show that for a fixed 
cube size P, Method 2 produces upper bounds to the Hartree-Fock limit when an 
accurate Romberg integration is available although the individual energies are both 
higher and lower than this result. In contrast, almost all of the individual 
calculations of Method 3 appear to be upper bounds to the Hartree-Fock limit, 
Those cases which are not, e.g., the Helium (P = 30, N= 643) SCF calculation, 
occur when the distance between the points is relatively large. When this distance is 
reduced, the value becomes more reasonable in appearance. Given an accurate 
numerical integration, our data also shows that as P becomes larger the SCF 
energy approaches the Hartree-Fock limit monotonically from above. Both of these 
trends can be understood by comparing them with their LCAO counterparts. In 
such calculations a variational upper bound exists only if the molecular integrals 
are computed accurately. In our approach, the number of points, N, for a fixed size 
cube corresponds to the accuracy of these integrals. Thus only when our numerical 
integration is saturated are our results reliable. Similarly an increase in the size of 
the integration cube corresponds to an enlargement of the basis set in LCAO-SCF 
calculations. Just as an increase in the number of basis functions leads to a 
monotonic decrease in the SCF energy, so an increase in P leads to the same result. 
These trends are not unique to our algorithm-all numerical orbital calculations 
must exhibit them. 
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TABLE II 

SCF Values for the Helium Atom 

3 
N-32 

Method 2 

P=lO 
Energy 2.85079,0, 
V/T 2.02177(7) 
E 0.91067(2) 

P-20 

Energy 

V/T 
c 

P-30 
Energy 
V/T 
L 

P=40 
Energy 
V/T 
+ 

Method 3 

P=lO 
eIl.rgy 
V/T 
E 

P=20 
Energy 
v/T 
f 

p=30 

Energy 

V/T 
E 

P=40 
Energy 
V/T 
E 

Basis set 
Energy 
V/T 
E 

2.84039(O) 2.84051101 
2.01803(6) 2.01751171 
0.9109612) 0.91084l21 

2.85787(01 

2.00386(71 
0.91690121 

2.865671 01 2.86037101 

2.01767(101 2.00128(7) 

0.925851 31 0.9175612) 

b 

3 
N=64 

2.84309lO) 

2.01841(7) 
0.91085(21 

2.86310(01 
2.00572(71 
0.91690(2) 

3 

N=128 

2.8412OlOl 
2.01769(71 
0.91086,21 

2.8591OlOl 
2.0041716) 
0.9167712) 

2.86231(O) 
2.00213(7) 
0.91760(2) 

2.8638OlO) 
2 002OOl7) 

0.91798(21 

2.84056(O) 
2.01747(71 

0.91086(21 

2.85781(O) 
2.00354(71 
0.9167312) 

2.86037lO) 

2.00127l7) 

0.91756(2) 

2.86115(01 2.8610910) 
2.00090(8l 2.00050171 
0.91796(2) 0.91779121 

3 
N=256 

2.84073lOJ 

2.0175117) 

0.91086l2t 

2.85813lO) 
2.0037317) 
0.9167312) 

2.86085(8) 
2.00150(l) 
0.91752(21 

2.86173(O) 
2.00082(7) 

0.9177911l 

2.84057(01 
2.0174616) 

0.91086l21 

2.85781(O) 

2.00354l71 
0 91673121 

a 
Extrapolated 

2.84057(01(O)(-) 

2.01745(71fO)(-) 

0.91086l21~0,~-~ 

2.85781(Ol(O)f1724) 
2.00358(7l(O)(1387) 
0.91672(21(0l1 5861 

2.86036(S)l49)(255) 
2.00129(7)(211(229) 
0.91749(2)( 61( 77) 

2.86104(0)(691l68 
2.00043(7),39)(86 
0.91773(2)1 61124 

2.84057lO)lO)(-1 
2,01746(7llO)(-) 

0.91086(21(O)(-) 

) 

2.85781101(0)l17241 
2.0035417ll0)(1392l 
0.91673(2,,0)( 587) 

2.860371 O)( 0)(2551 

2.00127(10)(211(227) 

0.917561 3)f 011 83) 

2.86107(0)1 21170) 
2.00037(81l13l(90) 
0.91773l21l 6)(17) 

2.86168 

2.00000 

0.91795 

'The parentheses contain an estlinate of the lteratlon error. the 
integration error and the truncation error respectively. 

b 
Reference 13. 

.k’of~. Values are in hartrees with signs reversed. 
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TABLE III 

SCF Values for the Boron+’ Ion 

3 
N-32 

Method 2 

P=lo 
Energy 20.81107(O) 
V/T 2.13358(l) 
c 8.98733(2) 

p=20 
Energy 
V/T 
c 

P=30 
Energy 
V/T 
c 

p-40 
Energy 
V/T 
f 

Method 3 

P=lo 
energy 20.84013(O) 
V/T 2.13273(l) 
c 8.98482(2) 

p=20 
Energy 

V/T 
E 

p=30 
Energy 
V/T 
E 

p=40 
Energy 
V/T 
E 

b 
Basis set 
Energy 
V/T 
E 

3 

N-64 
3 

N-128 
3 

N-256 
. 

Extrapolated 

20.85776(O) 

2.13212(l) 
8.98916(2) 

20.65444(O) 

2.1317611) 

8.9696512) 

20.85361(O) 

2.1316710) 

8.98976121 

20.85332(O)(O)(-) 

2.13164(1)(01(-I 
8.9898Ol2)lO)l-1 

21.74225(O) 
2.02701(2) 

9.42516(21 

21.73129(O) 
2.02644(2) 

9.42530(2) 

21.72855(O) 

2.02630(2) 
9.4253312) 

21.72764(0)(0)(87432) 

2.02625(2)(0)(10539) 
9.42534121(0)(435541 

21.88155~0~~143~~15391~ 
2.01126(2)( 7)( 1497) 
9.49616(3)1 O)( 7002) 

21.68728(O) 

2.01155(2) 
9.4961513) 

21.88298(01 
2.0113512) 
9.4961613) 

21.94153(O) 
2.0063312) 
9.51924131 

21.93575(O) 
2.00606(2) 

9.51925(3) 

21.93382(0)(193)(5227) 
2.00597l2)( 9)l 5311 
9.51925l31C O)l2309) 

20.85002lO) 
2.13191111 
8.9885512) 

2'0.6525110) 
2.13170(11 
8.98949(2) 

20.85313(O) 
2.1316511) 
6.98973(3) 

20.65334f0)(0)1-) 
2.13163(1)(O)(-) 
8.98981(3)(O)(-) 

21.72675(O) 

2.02164(l) 
9.4249812) 

21.7274110 
2.02628(2) 

9.4252512) 

21.7275810) 
2.0262611) 
9.42532121 

21.72764(0)(0)(12570) 

2.02625(1)(1)(10538) 
9.42534(2)lO)l435531 

21.8812410) 

2.01132(2) 
9.4960313) 

21.88147(O) 21.68152(O) 21..98154(0~~0~~153901 
2.01126l0)~0~( 1497) 
9.49616131101( 7062) 

2.0112912) 
9.49613131 

2.01126(O) 
9.4961513) 

21.93376(O) 
2.00598(21 
9.5192413) 

21.93361(O) 
2.00597121 
9.51925121 

21.93362(0)(11(5228) 
2.00597(2)(0)l 531) 
9.51925(2)(01(2309) 

21.98623 
2.00000 
9.54194 

a 
The parentheses contain an estimate of the lteratlon error, the 

integration error and the truncation error respectively. 

b 
Reference 13. 

Note. Values are in hartrees with signs reversed. 
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TABLE IV 

SCF Values for the Molecule H2 (R = 1.4 au) 

3 
tJ=32 

3 3 3 
tv=64 N=128 N=256 

Method 2 

P=lO 
Energy 1.14379 
V/T 2.02838 
E 0.59595 

P120 

( 01 1.134311 0) 1.13237( 0) 1.13189 
1103) 2.01190~80~ 2.01016(80) 2.00972 
I 33) 0.593851281 0.59385(27) 0.59385 

1.140211 01 1.13458(O) 1.13360 
2.021291105) 2.0085317) 2.00758 
0.596511 33) 0.59453(7) 0.59440 

Energy 
V/T 
E 

P-30 
Energy 
V/T 
c 

P=40 
Energy 
V/T 
E 

"ethod 3 

P=lO 
energy 
V/T 
f 

P=20 
Energy 
"0 
e 

P=30 
Energy 
"0 
c 

P=40 
Energy 
"0 
F 

Energy 
V/T 

a 
Extrapolated 

0) 1.131731 0)~01~-l 
80) 2.00957(103)101(-I 
27) 0.59385( 33)(O)(-) 

01 1.13331( Ol( 4)1158) 
81) 2.007461105)(20~l211) 
271 0.59439( 33)( 31( 54) 

I.135581 0) 1.13401( 0) 1.13349( 0)(52)(18) 
2.00903184) 2.00729(81) 2.00671(84)(58)(75) 
0.59458(28) 0.594491271 0.59446(28)( 311 7) 

1.13793( 0) 1.13424 
2.0184Ol105) 2.00731 
0.59661( 33) 0.59451 

1.13287( 0) 1.131721 0, 1.13173( 0, 1.13173 
2.01807~100) 2.00960180) 2.00958180) 2.00958 
0.59588( 33) 0.59385(28) 0.59385f28l 0.59385 

1.134451 0) 1.133281 0, 1.13328 
2.01563(102) 2.00729(81) 2.00729 
0.596441 33) 0.59441(281 0.59441 

0) 1.133011 OJl123)( 48) 
80 I 2.00361(105l(370~~310~ 
27) 0.59381( 3311 70)( 65) 

0) 1.13173( Ol(O)(-) 
80) 2.00951(100)(0)(-t 
27) 0.59385( 33lfO)(-I 

01 1.13328( O)lO)(155 
81) 2.00729f102)(0)(229 
28) 0.59441( 33)10)( 56 

1.16647( 0) 1.133561 0) 1.133521 0) 1.133501 Ott ll(22) 
2.16985(208) 2.00722184) 2.00686(821 2.00674(208)(121(55) 
0.62610( 42) 0.59459f28) 0.59449127) 0.59446( 2811 31( 5) 

1.134761 0) 1.133591 01 1.13320( Ol( 39)f 30) 
2.015061102) 2.00674(821 2.00397(102)(277)1277~ 
0.596541 33) 0.59451(271 0.59383( 33)( 68l( 63) 

b 

1.13363 

E 0.59466 

'The parentheses contain an estimate of the lteratlon error, the 
integration error and the truncation error respectively. 

b 
Reference 14, orbital energy from reference 3b. 

Note. Values are in hartrees with stgns reversed 
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TABLE V 

SCF Values for the Molecule H; 

3 3 3 3 a 
N=32 N=64 N=128 N=256 Extrapolated 

Method 2 

P=lO 
energy 1.31458( 0, 
V/T 2.02012(42, 
E 1.21074(16, 

P=20 
Energy 
V/T 
L 

P=30 
Energy 
V/T 
E 

PC40 
Energy 
"/T 
E 

Method 3 

1.30112( 0) 1.29789( 0, 1.29708( 0, 1.29681( O)(Ol(-I 
2.00875(41, 2.00623(41, 2.00602(129, 2.00600(129,~1,(-, 
1.21051(16, 1.21051116, 1.210511 16, 1.21051( 16,(O)(-) 

1.309231 0, 1.302201 0, 1.30058( 01 1.30005( 0)(1,024) 
2.00952145, 2.00323(44, 2.00198(44, 2.00159(45,(3,(441, 
1.21211(171 1.21188(161 1.21187(16) 1.21187~17,(0,(136, 

1.30358( 0, 1.301081 1, 1.30025( 11(83,(20, 
2.00388(44, 2.00239(129, 2.00189~1291~50)~30, 
1.21198117, 1.211971 17, 1.21197( 17,( O,(lO, 

1.305241 0, 1.30143( 0, 1.30016( 0,(127,( 9, 
2.00587(45, 2.00251(129, 2.001391129)~~12,150l 
1.21224(17, 1.21201( 16, 1.21193( 17,( S,( 51 

P-10 
Energy 
V/T 
c 

P-30 
Energy 
V/T 
E 

P=40 
Energy 
V/T 
P 

1.29692( 0) 1.296801 0) 1.29681( 01 1.29681( 0, 1.29681( O,(O)(-) 
2.00640(41) 2.00541(41) 2.00540(41, 2.00540(40, 2.00540(41,(0,(-) 
1.21072116, 1.21051116, 1.21051(16, 1.21051(16) 1.21051(16,(0,(-) 

1.30018( 0, 1.30004( 0, 1.300041 0, 1.30004( 0,10)(323, 
2.00253(45, 2.00157143) 2.00157(431 2.00157(45,(0,(383) 
1.21210116, 1.21187(17, 1.21187(17, 1.21187~17~~0~~136) 

1.31472( 0, 1.30027( 0, 1.30027( 0) 1.30027( 0,(0)(23, 
2.06617(691 2.00134(44, 2.00133(44, 2.00133169,(0,(24, 
1.22612123, 1.21197117, 1.21197(17, 1.21197~23,~0,~10, 

1.30049, 0, 1.30035( 01 
2.00219(451 2.00123(44, 
1.21223116, 1.21200(17, 

1.30030( 0,(5,( 3, 
2.00091~45,(3,(421 
1.21192(17,(8,( 5) 

b 
Basis set 
Energy 
V/T 
E 

1.30032 
2.00029 
1.21166 

"The parenth@ses contain an estimate of the Iteration error, the 
InLegratlon error and the truncation error respectively. 

b 
Reference 15, energy from reference 12. 

Note. The geometry of the molecule 1s an equilateral triangle with R = 1.6405 au. Values are in 
hartrees with signs reversed. 
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4. REDUCING THE TRUNCATION ERROR 

With the success of our improved treatment of the Coulomb singularity and its 
effect on the integration error the greatest impediment to increased accuracy is now 
the truncation error. One way of reducing this problem is simply to increase the size 
of the integration cube, but to maintain an accurate numerical integration this 
necessitates a corresponding increase in the number of points. Since each doubling 
of the total number of points slows the program down by roughly an order of 
magnitude, this idea becomes quickly unmanageable. An alternative is to use our 
finite cube results to extrapolate to the infinite cube value. To do so, however, 
requires an understanding of the behavior of a molecular orbital when the momen- 
tum is large. Work by Lassettre [lo] and others [7, 1 l] has shown that in such a 
limit the molecular orbital has the form 

#Atoms 

d,(P) - (P2 + 2-5,) -’ C c,.,(p) kp Ra, (47) 
u-1 

TABLE VI 

Extrapolation of SCF Energies to 
Reduce Truncatton Error Ustng Finrte Cube Results 

Fit to Eq. (48) and (49) 

Sys tern 

He 

B +3 

Two parametersa 

30140 2.8616135 
20,30 2.8614433 

_--_----- 
1702 

30,40 21.9719609 
20,30 21.9463395 

256214 

H2 30,40 1.1336359 
20,30 1.1336237 

122 

H3+ 30,40 1.3004060 
20,30 1.3003630 

430 

Three parametersa Extrapolatgd 
Estimate 

20,30,40 2.8616508 2.86165(Z) 
10,20,30 2.8616291 

--------- 
217 

20,30,40 21.9775748 21.97757(2436) 
10,20,30 21.9532102 

---------- 
243646 

20,30,40 1.1336386 1.13364(6) 
10,20,30 1.1336328 

58 

20,30,40 1.3004150 1.30041(4) 
10,20,30 1.3003520 

630 

aThese calculations are performed using the N=2563 energies. 

b The parenthesis contains the new estimate of the truncation error. 

Note. Values are in hartrees with stgns reversed. 
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where 

ALEXANDER,COLDWELL, ANDMONKHORST 

c,.,(p) > 0 and bounded. 

Approximating this function as simply pP4, it is easy to show that the kinetic 
energy and hence the total SCF energy must decay like p ~ 3. By least square fitting 
our finite cube values to formulas of the form 

E SCF -a+blp’ (48) 

E SCF - a + b/p3 + c/p5 (49) 

the constant “a” can be used as an estimate of the infinite cube result. Furthermore, 
when various cube sizes are used to produce this estimate it is possible to estimate 
the error in this extrapolation. In Table VI we present the results of such 
calculations for our four examples. To determine whether Eq. (48) or (49) is more 
accurate we compare each calculation with a similar one which was performed on a 
smaller cube (e.g., P = 30, P = 40 and P = 20, P = 30). The difference in these two 
values is itself an estimate of the truncation error so we take whichever error is 
smaller. All of these calculations are done using the N= 2563 energies to minimize 
any effect from the integration error. Since our extrapolated values and their errors 
agree with the accepted values for the three most accurately known examples (the 
Helium atom, the B +3 ton, and the H, molecule) we believe that the same is also 
true of the H + ion. 3 

5. CONCLUSIONS 

We have shown that a simple modification to our original algorithm significantly 
improves the numerical treatment of the Coulomb singularity. This change not only 
accelerates the convergence of the numerical integration but has several com- 
putational features which make it attractive. Unlike the previous method the point 
p = 0 need no longer be treated as a special case and no numerical derivatives need 
be taken. Both of these requirements inhibited vectorization. We have also argued 
that in the limit of an accurate integration our result should be variational even for 
a finite size cube and that our biggest remaining problem, truncation error, can be 
decreased by a simple extrapolation. Because of these improvements, our best SCF 
energy for H: is now confidently reported as - 1.30035 hartrees. This value is 
lower than any published basis set calculation. The closest value in the literature is 
a calculation by King and Morokuma [12] (- 1.30032 hartrees) which uses 
69 GTOs. A comparison of this and other basis set calculations with our result is 
given in Table VII. King and Morokuma estimate that the Hartree-Fock limit for 
this system is about - 1.30036 hartrees. Although they do not give the error 
associated with this estimate, it is in good agreement with our extrapolated value of 
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TABLE VII 

Comparison of SCF Values for the Molecule Hi 

IX/S basis -1.27555 6 contracted GTOs.a 

631G** basis -1.29852 18 contracted GTOs. b 

5s 2P basis -1.29971 33 contracted GTOS.~ 

5s basis -1.29993 5 optimized GTOs with D3h symmetry. d 

(7,3,1/3) basis -1.30032 69 uncontracted GTOS.~ 

This work -1.30035 1 numerical orbital with no symmetry. 

This work -1.30041 extrapolated result from Table 6. 

aBasis set from Ref. 16. 

b Basis set from Ref. 17. 

‘Basis set from Ref. 18. 

d Calculation described in Ref. 15. 

eCalculation described in Ref. 12. 

.Yorc. The geometry of the molecule is an equilateral triangle with R = 1 6405 au. Values are in 
hartrees. 

- 1.30041(4) hartrees. These energies show conclusively that very accurate SCF 
calculations on polyatomics are possible with numerical orbitals. Future 
improvements to our algorithm can only make this method more attractive. 
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